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Abstract Faults are the products of wear processes acting at a range of scales from nanometers to
kilometers. Grooves produced by wear are a first‐order observable feature of preserved surfaces.
However, their interpretation is limited by the complex geological histories of natural faults. Here we explore
wear processes on faults by forensically examining a large‐scale controlled, laboratory fault which has
a maximum offset between the sides of 42 mm and has been reset multiple times for a cumulative slip of
approximately 140 mm. We find that on both sides of the fault scratches are formed with lengths that
are longer than themaximum offset but less than the cumulative slip. The grooves are explained as a result of
interaction with detached gouge rather than as toolmarks produced by an intact protrusion on one side
of the fault. The density of grooves increases with normal stress. The experiment has a range of stress of
1–20 MPa and shows a density of 10 grooves/m/MPa in this range. This value is consistent with
recent inferences of stress‐dependent earthquake fracture energy of 0.2 J/m2/MPa. At normal stresses above
20 MPa, the grooves are likely to coalesce into a corrugated surface that more closely resembles mature
faults. Groove density therefore appears to be an attractive target for field studies aiming to determine the
distribution of normal stress on faults. At low stresses the groove spacing can be measured and
contrasted with areas where high stresses produce a corrugated surface.

Plain Language Summary The surfaces of faults have grooves that hold information about the
fault's mechanics and history. Interpreting these grooves on a complex fault needs to be guided by
models of simpler systems; however, such models must also be sufficiently large to capture the multiscale
processes carving the fault surface. Here we perform experiments on a 3‐m‐long artificial fault in a
laboratory setting and find that the fault surface develops roughness during slip. First, small particles break
off in between the surfaces and excavate grooves on each side. These grooves are created by detached
particles rather than protrusions attached to one side or the other. As the normal stress between the fault
sides increases, so does the groove density. In a region of the laboratory fault where the normal stress is high,
the grooves coalesce to form a corrugated surface that appears more like a natural fault than the other
experimentally created surfaces. The work both gives insight into roughness formation and suggests a
strategy for future field work that could use roughness to map normal stress variations.

1. Introduction

Geological observations of faults can identify the final products of failure on slip surfaces. Significant effort
has gone into forensically connecting specific surficial features to geological processes; however, most of
those observations are on faults with complex geological history (e.g., Brodsky et al., 2016; Doblas, 1998;
Engelder, 1974; Kirkpatrick & Rowe, 2013; Rowe & Griffith, 2015). Laboratory experiments play a key role
in helping link‐specific features such as striations, polish, and gouge formation to their underlying processes
(Means, 1987; Renard et al., 2012, Fondriest et al., 2013, Tisato et al., 2012; Toy et al., 2017). However, most
laboratory experiments focused on wear products have been limited to relatively small‐scale samples (Badt
et al., 2016; Boneh & Reches, 2018; Davidesko et al., 2014; Hirose et al., 2012). This is a particularly serious
problem for fault wear because the process is intrinsically multiscale with the interactions between
micron‐scale asperities and millimeter‐sized grains resulting in observable features at centimeter or meter
scale (Yamashita et al., 2015). While small‐scale experiments focus on isolating specific friction and wear
behavior, only large‐scale experiments can capture the spatial distribution of wear features, their density,
and their interactions as a function of variables such as normal stress and displacement.
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To meet this need, we have capitalized on the Cornell 3 m apparatus. This machine loads a 3 m granite sam-
ple, and deformation occurs on a 3.1 m × 0.3 m granite/granite simulated fault (Ke et al., 2018;
McLaskey, 2019; Wu &McLaskey, 2019). This sample has been in use for 2.5 years and has hosted hundreds
of slip events on the surface for a total of about 140 mm of fault slip at 1–12 MPa sample‐average normal
stress levels (see supporting information Table S1). In this study, we separated the blocks and mapped the
wear features on the fault surfaces. After reviewing our strategy for mapping the many grooves and smears
that were visible on the fault surfaces, we enumerate six key observations that cumulatively demonstrate
that the grooves are formed by detached particles etching the surface in a process that is significantly affected
by the local normal stress regimes. This grooving by a detached particle is known in the engineering litera-
ture as third‐body wear (e.g., Godet, 1984), and it produces wear marks that are not equivalent to toolmarks
produced by a fixed protrusion on one side of the wall. The observations emphasize the importance of
third‐body wear in determining the steady‐state geometry of faults and suggest a strategy for field studies
to explore normal stress variations in situ.

Throughout this study we refer to trenches formed in the fault surfaces as grooves, rather than striations,
slickenlines, or another term. Geological nomenclature of fault surface features is extensively reviewed by
Doblas (1998). The term striation is specifically defined by Toy et al. (2017) as a groove formed as a conse-
quence of brittle wear. Although we will eventually infer a third‐body wear origin for the grooves observed
here, we have no direct evidence of their brittle nature and thus prefer the nongenetic term groove.

2. Mapping Study

The Cornell 3 m apparatus is a biaxial direct shear device that applies force to two 3‐m‐long granite blocks,
shown in Figure 1. The moving block is pushed past the stationary block with hydraulic pistons. There is an
intrinsic asymmetry to the device as the pistons act on only one side of the moving block. Thus, we refer to
the “leading edge” and “forcing end” to distinguish the boundary conditions at each end of the simulated
fault (Figure 1). The blocks were originally cut and prepared by the manufacturer to be flat to 125 μm before
assembly. After the initial 1 mm of slip, the fault surfaces were inspected, and a fine layer of rock powder was
observed throughout the 3.1 m × 0.3 m simulated fault. After 18 mm of cumulative slip the sample was
opened a second time and the gouge was wiped off. The fault had been visibly polished, as evidenced by
its enhanced ability to reflect light relative to a section of the simulated fault that was not worn because it
was mated against a trough on the opposite side of the fault (red in the wear map in Figure 2, described

Figure 1. Photograph of the Cornell 3 m apparatus. The Barre gray granite sample consists of a moving block and
stationary block whose interface forms the laboratory fault. Normal and shear stress is applied to the fault via arrays
of 36 and 18 hydraulic cylinders that apply force to the top and left sides of the moving block, respectively.
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below). Thenceforth, gouge was preserved. After sets of experiments totaling 15–42 mm of displacement, the
cylinders were retracted and the moving block was reset with an overhead crane to its original position
relative to the stationary block (to 500 μm accuracy in the north‐south direction and ~20 μm accuracy in
the up‐down direction), while fault surfaces were kept as undisturbed as possible. Since the installation of
the experiment, the fault blocks were moved to their total possible displacement of about 42 mm twice,
and were reset multiple times prior to the mapping study described below (see supporting information
Table S1).

We mapped the fault surface on the stationary block by overlaying transparencies onto the surface and tra-
cing all visible wear features. This standard geological mapping technique (e.g., Graham et al., 2003) is more
applicable to the large‐scale blocks with low amplitude roughness than LiDAR or structure from motion
photogrammetry techniques, both of which lack the resolution to efficiently cover the surface. Grooves on
the fault surface (typically light colored due to the light colored gouge powder associated with them) were
marked in black. Smeared minerals (typically dark colored or nearly black) were marked in blue. Sections
that were too heavily worn to count individual grooves were colored yellow. The locations of injection ports
and troughs for planned fluid injection experiments were colored red.

Orientation is a confusing aspect of this study. The maps were constructed facing each side of the block,
and thus the left‐hand side of the map is the leading edge on the stationary‐block side of the fault and the
forcing end on the moving‐block side of the fault. We therefore reference cardinal directions in this
mapping study (see compass on Figure 1) and flipped both the maps and the photographs of the station-
ary block in the N‐S direction to compare them to the moving block with north on the left‐hand side
of both images. (This flipping procedure is a reflection about a vertical line halfway between the forcing
and leading edges.) In this reference frame, we found the moving and stationary blocks to be well
matched (Figures 2 and 3). We then digitized these maps using a scanner (300 dpi resolution) for later

Figure 3. Example of mirror image grooves. Annotated photographs of the fault surface of the stationary block (a) and moving block (b) depict a particularly large
groove at x = ~350 mm. Red annotations show directly that each groove and smear has a corresponding groove on the opposite side of similar scale. Blue letters
denote the locations of topography measurements shown in (c) and (d). The profiles, taken after the gouge was removed, show this large groove which is
50–100 mm deep and was carved on both sides of the fault.
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processing. Figure 2 shows this map alongside panoramic photographs
of the two sides of the fault surfaces.

Themapping data are complemented bymeasurements of fault roughness
using a contact stylus profilometer (Mitutoyo Surftest SJ‐210). We also
compared the observed wear to the along‐fault stress distribution deter-
mined from strain gages and a finite element model, as reported in Ke
et al. (2018), and to the history and spatial distribution of fault slip failure
modes on the sample.

3. Observations
3.1. The Relationship Between Opposing Sides of the Fault

The first and clearest observation is that wear marks on the opposite sides
of the fault match. When the wear map was transferred to the opposite
face of the fault, it was found that nearly all of the grooves and smears that
were mapped on the stationary‐block side of the fault had mirror image
counterparts on the moving‐block side of the fault. The match is clear
both at the large scale (Figure 2) and at the level of individual scratches
and smears, as shown in Figure 3. A positive tool on one side was not
observed to correlate with negative topography on the other. Instead,
grooves and associated gouge appeared on both sides at once. This is in

contrast to the ridge and groove‐type slickensides noted byMeans (1987). Necessarily, there must be a groov-
ing agent, but it is not part of the hard rockmeasured by the profilometer and imaged by the photographs. As
will be elaborated on below, detached gouge particles thus form a natural candidate for the grooving agent.

3.2. The Length of Grooves

While themajority of mapped features have L< 42mm,many prominent grooves had length L> 42mm and
were thus longer than the total possible offset between the two blocks (42 mm) (one example is shown in
Figure 3). As discussed in section 2, over the complete history of the apparatus, the system has been reset
multiple times (supporting information Table S1), and the total cumulative slip between the blocks is
~140 mm. Figure 4 shows the full distribution of length L of mapped grooves and smears. Approximately
25% are more than 42 mm but only 0.5% are longer than 90 mm. Nearly all mapped features had L less than
the cumulative amount of ~140 mm. Therefore, the total cumulative slip is limiting the size of the grooves
rather than the maximum offset between the blocks.

3.3. Normal Stress and Grooves

The maps of Figure 2 show significant variability in wear as a function of distance in the slip direction
(x direction) but little variability in wear in the direction perpendicular to slip (z direction). Groove density
was highest at the ends and least in the middle of the block. There is also an asymmetry to the wear; groove
density is highest on the leading edge.

These wear patterns and the forcing/leading edge asymmetry are particularly interesting in light of the nor-
mal stress measurements taken during previous experiments on the same apparatus (Ke et al., 2018). Direct
shear experiments of this type produce higher normal stress near the fault ends than in the center, due to an
edge effect (Kammer et al., 2015; Xu et al., 2019), and the asymmetry of normal stress is the result of a net
moment introduced during the loading. This along‐fault normal stress distribution remains relatively con-
stant despite variations due to different loading procedures from one experiment to another (Ke et al., 2018).

Figure 5 shows that the number of mapped grooves on profiles perpendicular to slip increases with normal
stress. The asymmetry of wear noted above relates to a corresponding asymmetry of normal stress based both
on the eight measurement locations and from a finite element model. In particular, there was more wear at
about x= 2.7 m, which is near the leading edge, than at the analogous position of x = 0.4 m, near the forcing
end. The measured normal stress and the groove density are linearly correlated with an R2 of 0.96, which
corresponds to a p value of <0.0005 for eight data points.

Figure 4. Distribution of lengths of mapped grooves and smears. Only
mapped wear features between x = 0.1 m and x = 2.81 m were included
since high groove density close to the ends of the samples made accurate
counting impossible. Grooves longer than 90 mm are rare and likely
indicate two grooves that merged.
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3.4. Evidence of Gouge

Light colored fault gouge was distributed in a thin layer (a fewmicrons thick) all over the fault surfaces; how-
ever, gouge was observed to coat and spill out from the grooves (Figure 3), consistent with previous labora-
tory observations (Boneh et al., 2014; Togo et al., 2015; Yamashita et al., 2015). There was a heavy coating of
gouge (~100 μm thick) at the higher stressed fault ends. Under a microscope (Nikon Eclipse L200N 2.5X to
100Xmagnification), we found the majority of the gouge particles were 1 μm in size or smaller, though some
larger rock flakes sampled from fault were up to 100 μm in size.

3.5. The Width of Grooves

Using the photographs and profilometer measurements we determined the width of the mapped grooves
were 0.1 to 2 mm wide (Figures 2 and 3). This is far larger than most gouge particles (~1 μm) and similar
to the grain size of the granite. Barre Gray granite has a grain size that ranges from 0.25 mm to 3 mm with
average grain size 0.84 mm (Xia et al., 2008). The groove width does not appear to change systematically
across the sample. Normal stress increases do not appear to change the groove width, unlike groove density.
Many grooves were narrower on one side, which we refer to as the head, and appear to widen and deteriorate
with continued fault slip, as gouge is transported in the z direction (perpendicular to the slip direction), simi-
lar to previous observations (Doblas, 1998; Togo et al., 2015; Yamashita et al., 2015). For example, the groove
shown in Figures 3b and 3d on themoving block is narrower on the right side (+x direction), and has a wider
tail with gouge smeared out in the z direction on the left side of the photo. Its mirror image counterpart in
Figure 3a should have its head on the left side (−x direction); however, resetting of the blocks muddies this
observation.

This head and tail of individual grooves is also depicted schematically in Figure 8 (right side) and can be used
in this case to determine the sense of fault motion: The head observed on one fault face points in that face's
direction of motion relative to the opposite face.

3.6. Grooving Regimes

On the leading edge of the sample, the grooves become denser and ultimately coalesce into a rough surface
with more significant topography, lacking individual grooves. This transition can be seen in the profilometer
data (Figure 6). Most of the profiles have minimal long‐wavelength topography, a feature common to artifi-
cially ground surfaces (e.g., Marone & Cox, 1994). The bottom profile shows the most wear and is closest to
the leading edge of the sample; the grooves have merged and are no longer distinct. This profile also has
enhanced long‐wavelength topography, which illustrates how coalescence of grooves can reintroduce the
long‐wavelength topography expected for self‐affine surfaces.

There is also a hint in the data of regular spacing of the grooves in the z direction (normal to the sliding direc-
tion) in the region near the leading edge before the fully coalesced regime. We measure the spacing between
the grooves for each column of the digitized map in Figure 2 and then study their distribution by measuring
the mean and standard deviation in each column. We then compute the coefficient of variation by normal-
izing the standard deviation by the mean. Again, this measurement is done on each column individually.

Figure 5. The number of mapped features and normal stress along the length of the fault. (a) Normal stress was measured at eight locations (yellow circles)
and estimated with a finite element model (magenta line) (Ke et al., 2018) and compared to the number of mapped features (grooves and smears) in the z
direction. (b) The number of grooves increased approximately linearly with measured normal stress which suggests groove density ρgrooves = 10 grooves/m/MPa
(see text).
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The coefficient of variation can be used to evaluate periodicity. A value of the coefficient of variation below 1
means that the variability is low relative to the mean spacing. The limit of a coefficient of variation of 0
implies perfectly periodic behavior. Figure 7 shows that between x = 2.3 and 2.6 m the coefficient of
variation has a modal value near 1, but beyond 2.6 m it is skewed lower. The low values imply more
regular spacing in the highly stressed region.

4. Interpretations

To summarize, the key observations are (1) grooves match between opposite sides of the fault, (2) groove
lengths range from 10–80 mm, which includes a range more than the maximum offset between the two sur-
faces before a reset and less than the cumulative fault displacement, (3) groove density increases with nor-
mal stress, but not groove width, (4) gouge is observed to spill out from grooves, (5) groove width is larger
than powder particle size and similar to the grain size in the granite, (6) at sufficiently high density, grooves
merge to create enhanced long‐wavelength topography and may be organized into a preferred spacing at
intermediate density.

4.1. Third‐Body Wear

The clearest conclusion that arises from this work is the importance of gouge in creating the topography of
faults. In tribology, a wear particle that is separate from the two rubbing surfaces is referred to as a third body
(e.g., Godet, 1984). Godet (1984) note that the third body can be either filling the space between the other two
surfaces or serving as a strut separating them. Recent work applied this third‐body concept to wear of rocks
during frictional sliding, and suggested that continued wear occurs at the gouge wall rock interface and that
friction may coevolve with wear with the most extreme effects seen when the third bodies form a continuous

Figure 6. Surface topography and overall roughening. Representative surface topography measurements made with the
stylus profilometer (Mitutoyo Surftest SJ‐210 profilometer) at five locations along the 3 m granite/granite fault, offset
for clarity. The x locations are marked with blue triangles in Figure 2c and labeled. The z locations report the distance
from the bottom of the sample. All profiles are made in the z direction (perpendicular to the sliding direction).
Profiles from the central part of the fault (0.5 m < x < 2 m) show flat‐topped surfaces with occasional troughs and minor
grooves. Profiles closer to the leading edge of the fault (x = 2.9 m, x = 3.07 m) show a progressive roughening with
an increase in long‐wavelength roughness. Profiles that specifically target a large groove are reported in Figures 3c
and 3d.

10.1029/2020AV000184AGU Advances

BRODSKY ET AL. 7 of 13



layer (Boneh et al., 2013, 2014; Lyakhovsky et al., 2014). The detachment process itself may involve either
plastic or brittle failure, but in either case results in particles that are no longer attached to either side
(Aghababaei et al., 2016; Candela & Brodsky, 2016; Chen et al., 2020). Third‐body wear is particularly apt
for the groove formation process seen here. If the grooves were carved by a hard protuberance stuck to
one side of the fault, as typically inferred for toolmarks attributed to asperity plowing, grooves would not
be symmetric on both sides of the fault (Observation 1), and groove length would not exceed the
maximum fault offset (Observation 2). Instead, the match between opposite sides of the fault and the
maximum length of grooves suggests that the grooves are the result of a detached clump of gouge that
damages both sides of the fault. The gouge spilling from the grooves reinforces this interpretation
(Observation 4). The clump of gouge is likely the comminuted remains of one or more grains that were
plucked from the wall rock. The longevity of the grooves through successive slip events indicates that an
isolated clump remains an effective agent of groove formation even as wear progresses. In this work, this
type of third‐body wear appears to be the primary agent of groove formation.

4.2. Increased Wear at High Stress

It has long been known that wear rate increases with increasing normal stress (Archard, 1953; Boneh &
Reches, 2018; Wang & Scholz, 1994). Badt et al. (2016) also found that penetrative damage and roughness
increased with normal stress by comparing distinct experiments at each stress. In agreement with this, we
observe increased numbers of grooves and an associated increase in roughness at the ends of the fault

Figure 7. Groove spacing and regularity. The coefficient of variation (see text for definition) of groove spacing for each
column on the image for which there is a sufficient number of grooves to form statistics. (Coefficient of variation is
only measured in locations with 10 or more intergroove intervals.) Bottom left is the distribution of coefficient of
variations between 2.3 and 2.6 m (region bounded by red dashed lines in upper panel), and bottom right is from 2.6 m to
the edge of the image, that is, in the high normal stress region. The distribution shows lower coefficients of variation, that
is, less variability in spacing in the high stress region.
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that experience higher normal stress. The normal stress effect is strongest on groove density. From the
photos, we measured the total number of grooves in the 0.28 m (11 inches) wide map. (Note that the trans-
parencies used for mapping are 1 inch narrower than the block, and we did not map the bottom 1 inch.) This
measurement allows us to calculate a groove density, that is, the number of grooves divided by the width of
the map. Figure 5b shows at the location where the strain gauge measures 13 MPa a measurement of 40
grooves, which results in a density of 140 grooves/m. Assuming that the groove density increases linearly
with stress, this maximum value corresponds to about 10 grooves/m/MPa given the 140 mm of cumulative
slip that has been experienced by the block.

The observation suggests a field strategy for fault zones. Geophysicists have long wondered about the normal
stress distribution in situ because it can exert a first‐order control on earthquake nucleation and propagation
(Lay & Kanamori, 1981; Lin & Lapusta, 2018; Mai & Beroza, 2002). Grooves may provide an observational
inroad into this problem. The correlation between normal stress and wear density suggests that damage
could be used as an indicator of meter‐scale variations in normal stress, that is, asperities. This strategy
would be most effective if the strength, hardness, or wearability of the wall rock is relatively uniform. In
addition, we infer that groove density should increase with depth unless other factors that were not explored
in this study, such as temperature, mitigate it.

We can speculate on the physical origin of the increased groove density. Reviewer Z. Reches suggested a sce-
nario where increasing normal stress increases the number of asperities in contact (e.g., Archard, 1953).
With increasing contacts, the opportunity for breaking asperities also increases, and thus the increasing nor-
mal stress should produce an increasing number of detached particles (Chen et al., 2020). With the increase
in detached third bodies, the groove density may also increase.

In the limit of high stress, the increased groove density should transition to a qualitatively different type of
surface where grooves are superimposed and lose their individual identity. If grooves are each 1 mm wide,
naïve extrapolation of the observed groove density of 10 grooves/m/MPa is that at approximately
100 MPa, the grooves completely fill the surface. In fact, we observe a transition in the morphology of the
surface at approximately 20MPa (Observation 6). This lower stress transitionmay be the result of interaction
between grooves that creates coalescence when the groove separation is equal to three to four groove widths.
The field prediction here is therefore that regions with sufficiently high normal stress should transition to
the coalesced roughness described at the ends of the block, which is more similar to mature fault observa-
tions than the isolated grooves (Sagy & Brodsky, 2009).

4.3. The Mechanics of Groove Generation and Feedback Mechanisms

As described schematically in Figure 8, we infer that a weak grain is plucked from the wall rock and crushed
into finely comminuted wear product (gouge) that is then dragged by the dislocating fault surfaces to extend
the grooves (Bhushan, 2002; Renard et al., 2012; Togo et al., 2015; Wang & Scholz, 1994; Yamashita
et al., 2015). Groove widths were 0.1 to 2 mm, which is similar to the grain size of the granite (Observation 5).

For wear of rocks, the gouge clump may be an especially persistent third body for the formation of grooves
due to a positive feedback mechanism (Yamashita et al., 2015). Damaged and disaggregated rocks are not as
well packed as intact samples; even highly compacted gouge likely has porosity (~1–4%) at least an order of
magnitude larger than the intact granite (<0.1%). This increased porosity causes wear products to expand. It
is commonly observed that gouge spills out from samples during rotary shear experiments on cm‐sized sam-
ples (e.g., Reches & Lockner, 2010). In the groove generation process described previously, gouge spills out of
grooves (Togo et al., 2015; Yamashita et al., 2015) but remains confined within the fault and can therefore act
as a stress concentrator that causes further localized damage that reinforces the feedback loop. This process
can cause grooves to widen. For example, Renard et al. (2012) studied groove formation on a halite sample
and observed oblique fractures on the sides of groves and a damage zone 3–4 times wider than the original
groove.

However, finely comminuted gouge particles may also act to lubricate the fault, lower its coefficient of fric-
tion (Reches & Lockner, 2010), and make the fault slip more stably (described in more detail below), and
these effects could potentially act to counter the above positive feedback mechanism by reducing the stress
on the indentor.
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4.4. Fault Stability and Gouge Layer Evolution

Cumulative wear of the fault surfaces was accompanied by changes in the behavior of the 3‐m sample when
it was loaded. The faces of the granite samples were originally prepared by the manufacturer to be flat to
125 μm. During an initial running‐in period (15 mm of cumulative slip sustained at ~7 MPa normal stress)
the sample became stronger (sample average coefficient of friction increased from 0.5 to 0.7) and more
unstable. Slip during complete‐rupture dynamic slip events grew from 50 to 150–200 μm/event. This
running‐in process was related to the destruction of the initial topography left by the manufacturer's surface
preparation: The most highly stressed contacts were crushed and ground up into gouge which helped distri-
bute shear stress more uniformly at the mm scale. After this initial running‐in period, fault properties
evolved more slowly.

With continued accumulation of fault gouge, slip events became somewhat more stable and prone to creep,
particularly if the sample was reset or the gouge layer was disturbed or allowed to relax without confine-
ment. By about 80 mm of cumulative slip, the fault ends, which were highly worn, became more prone to
slow aseismic creep during experiments (McLaskey, 2019). This effect was particularly strong immediately
after the granite blocks were reset. In fact, experiments conducted after this mapping study was conducted
were particularly prone to creep: Confined slip events had low stress drop and were not fully dynamic (see,
e.g., Wu & McLaskey, 2019). When the fault gouge was subsequently wiped off both sides of the fault, we
were able to readily generate fully dynamic confined slip events once again.

The increased strength and decreased stability in the running‐in phase is consistent with previous work on
bare rock surfaces (Togo et al., 2015) and fault gouge (Scuderi et al., 2017). In general, gouge layers are more
stable than intact samples, but the propensity for creep with accumulated gouge that we observed may pri-
marily result from disruptions to the evolving fabric of the gouge layer that occur when the fault is opened.
While this disruption is less likely to occur in nature, thick gouge layers may be more prone to creep and
weaken in response to stress perturbations, perhaps due to nearby earthquakes or fluid pressure variations.

Figure 8. Cartoon of third‐body wear via an isolated clump of fault gouge. The left side shows a top view of the
formation of one groove. The right side shows how both fault surfaces would look if opened and reset, similar to
Figure 3. Time 1: A grain or bump is plucked from the wall rock due to the interaction of surface topography. Time 2: As
the fault slides, that grain is ground up into fault gouge (colored red). Other grains are plucked forming additional
grooves (orange and yellow, not shown on the left side). The more porous gouge expands and acts as a stress concentrator
that can cause further wear on both sides of the fault in the form of grooves. Time 3: The gouge is smeared between
the two sides of the fault, and grooves are elongated. The head of the groove is where the third body first formed and is in
the +x direction on the moving block and −x direction on the stationary block.
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4.5. Shear Fracture Energy

Shear fracture energy is a parameter thought to be important for the physics of dynamic fault rupture
(Abercrombie & Rice, 2005; Nielsen et al., 2016). It has been proposed that local Mode 2 fracture energy
for shear slip on a frictional interface is linearly proportional to normal stress (Bayart et al., 2015) at least
over a limited stress range (1–10 MPa). This could be a result of larger true area of contact under higher nor-
mal stress (Dieterich & Kilgore, 1994).

We roughly calculate the energy consumed by the formation of the grooves and compare our measurements
with previous estimates for Mode 2 fracture energy as a function of normal stress. The static Mode 1 energy
release rate (Tada et al., 2000) for the granite samples GI

s = (KIc
s)2/E∞ = 33–96 J/m2, where E∞ is the static

Young's modulus (30 GPa) and KIc
s = 1.0–1.7 MPam1/2 (Dai & Xia, 2013) is the static Mode 1 fracture tough-

ness of Barre Gray Granite. Using profilometer measurements as a guide (Figures 3c, 3d, and 6), we model
the grooves as shallow troughs (depth of 50 μm) with diameter d = 0.8 mm equal to the average grain size
(Xia et al., 2008); the energy consumed by groove formation is dGI

sρgrooves = 0.3–0.8 J/m2/MPa, where
ρgrooves = 10 grooves/m/MPa (Figure 5b and section 4.2). These estimates, which should be considered a
lower bound for the energy required to pluck a granite grain, are remarkably close to previous Mode 2 frac-
ture energy estimates. Ke et al. (2018) found 0.2 J/m2/MPa (or 0.2 μm) for the same granite samples, and
Kammer and McLaskey (2019) estimated 0.02–0.3 J/m2/MPa from secondary rupture fronts observed on a
Sierra White granite sample. Bayart et al. (2016) estimated 0.28–0.35 J/m2/MPa for samples composed of
glassy polymers.

5. Conclusions

We studied the sliding surfaces of a dry granite/granite fault deformed in a 3‐m‐long loading machine at 1 to
20 MPa stress levels. After about 140 mm of cumulative fault slip, the fault surfaces were adorned with
grooves tens of mm long and 1 mmwide. Gouge particles (<1 μm in size) spill from the grooves. We mapped
the grooves and measured profiles of the fault surface topography. We find that the grooves are the product
of third‐body wear: A grain of the wall rock was plucked or dislodged from a side of the fault and ground up
into powder that expanded to create a stress concentration and damaged both of the fault surfaces. This
results in a set of mirror image grooves on either side of the fault.

The laboratory samples had an initial topography that was unnaturally flat compared to natural faults, and
this likely affected the details of our observations. However, this study shows that a dislocated and pulver-
ized portion of a wall rock can act as tool for third‐body wear, which is distinct from wear by toolmarks,
and may be important for producing the grooves observed on natural faults. Rough faults in nature may
be even more prone to produce third‐body particles for wear as jagged edges are broken.

We find the wear patterns are strongly dependent on the local normal stress, which varies by about an order
of magnitude along the length of the fault. Grooves in the low‐stress central section of the fault were spaced
50 mm apart, on average. Moving closer to the highly stressed ends of the fault, groove density increased,
showed a hint of a regular spacing, and then coalesced into highly worn areas with increased topography
at longer wavelengths. The highly worn sample ends had thick gouge layers and were more prone to creep,
particularly when the sample was reset and the fabric of the gouge was disturbed. The observations suggest a
field strategy to map normal stress on exposed faults and thus address a major unknown in models of earth-
quake nucleation and propagation. Of course, natural faults have additional complications produced by nat-
ural roughness, heterogeneous properties, and fluid flow. It remains to be seen how effective the strategy is
in nature.
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